EBT-101 achieves robust CRISPR-based editing of HIV proviral DNA without detectable off-target effects Thomas J Cradick,¹ Vahan Simonyan,² Elaine E Thompson,² Eli J Fine,³ Rafal Kaminski,⁴ Matthew Hayden,⁵ Sarmistha Bhattacharya,⁵ Wenwen Huo,¹ Ethan Xu¹

¹Excision BioTherapeutics, San Francisco, CA; ²Embleema, Metuchen, NJ; ³Genome Engineering Consultant, Smyrna, GA; ⁴Temple University, Philadelphia, PA; ⁵Dartmouth-Hitchcock Medical Center, Lebanon, NH

INTRODUCTION

- According to recent estimates, ~1 million people in the US and 36.9 million people worldwide live with HIV/AIDS.¹ The current standard of care is a combination of antiretroviral therapies, which may control the disease but are not curative, as they are unable to target integrated HIV-1 genomes.³ Gene editing to remove proviral DNA can provide the opportunity to eradicate the disease, advancing beyond the current standard of care
- Safe and effective viral excision requires pairs of CRISPR-Cas guide RNAs (gRNAs) that specifically cleave HIV but have minimal similarity to sites in the human genome
- Bioinformatics facilitate selection of HIV-specific gRNAs with fewer nominated (potential) sites output in the human genome than when targeting human sequences
- EBT-101 consists of an adeno-associated virus (AAV) vector expressing the SaCas9 nuclease and 2 gRNAs targeting 3 sites in HIV: 2 well-conserved regions in the 5' and 3' long terminal repeats (LTRs) and one in the Gag gene. Excising these large sections of the integrated HIV-1 genomes disrupts the viral life cycle and is intended to reduce latent HIV-1 patient reservoirs. The efficacy of EBT-101 has been demonstrated in humanized mouse models²
- Here, we describe the bioinformatics, as well as our results from multiplex amplicon sequencing that identified high levels of viral excision without detecting unintended indels or recombination

METHODS

• The human reference genome was scanned for the 21-bp EBT-101 LTR-1 and GagD guide sequences with NNGRRN, the SaCas9 protospacer adjacent motif (PAM), using the bioinformatics program COTANA (<u>CRISPR Off-T</u>Arget Nomination and Analysis) based on the Cas-OFFinder algorithm

Figure 1: The use of rhAmpSeq¹¹ allows for the processing of tens of thousands of cells to achieve robust sequencing resolution

Figure 2: CRISPR is a viral defense strategy

B, blocking moiety; PCR, polymerase chain reaction; R, base of RNA; rhAmp, RNase H-dependent PCR amplification; rhAmpSeq, rhAmp sequencing.

sgRNA, single guide RNA.

RESULTS

• The COTANA bioinformatics search of the human genome found no identical matches, as there are no target sites in human cells without HIV. There were also no candidate off-target sites nominated with 1 or 2 differences (mismatches and/or bulges)

Table 1: Only 1 human chromosomal site nominated with 3 differences from either EBT-101 guides

Differences	Mismatches	Bulges	LTR-1	GagD
Zero	0	0	_	-
One	1	0	-	-
One	0	1	-	-
Two	2	0	-	-
Two	1	1	-	-
Three	3	0	1	-
Three	2	1	-	-
Four	4	0	13	24
Four	3	1	57	85

High-throughput multiplex amplicon sequencing detected high levels of HIV editing and excision, but not unintended editing or recombination in U1 cells, a pro-monocytic, human myeloid leukemia cell line containing 2 integrated copies of the HIV genome that were treated with LTR-1 and GagD gRNAs coupled with SaCas9

The human reference genome was searched using COTANA bioinformatics software to nominate locations with the fewest differences to the EBT-101 guide RNA sequences and the SaCas9 PAM (NNGRRN). Sites were then scored and assigned by the number of nucleotide mismatches and bulges.LTR, long terminal repeat; PAM, protospacer adjacent motif.

Figure 3: Evolution of the multi-guide platform for excision of latent proviral HIV-1

FDA, food and drug administration; IND, investigational new drug; ART, antiretroviral therapy; SIV, simian immunodeficieny virus.

Excision BioTherapeutics initiates Phase 1/2 trial evaluating EBT-101 as a potential cure for HIV

Table 2: Bioinformatics output of nominated chromosomal sites with the fewest mismatches and bulges against the GagD and LTR-1 guides, respectively. Secondary ranking is by match score. Only one site was identified with 3 or fewer differences

Popk	Chr	PAM												Ga	gD /	Alig	nme	ent												MM +	Match
Rallk	CIII.	Location	G	G	Α	Т	Α	G	Α	Т	G	Т	Α	Α	Α	Α	G	Α	C	Α	С	С	Α	Ν	Ν	G	R	R	Ν	Bulges	Score
1	2	65655605	•	С	•	G	•	•	-	•	•	•	Т	•	•	•	•	•	•	•	•	•	•	G	G	G	Α	Α	Т	3+1	1.49
2	2	18127193	•	Α	•	•	•	_	•	G	•	•	С	•	•	•	•	•	•	•	•	•	•	Α	G	G	Α	Α	Т	3+1	1.55
3	2	22163338	•	•	•	G	G	•	-	•	•	С	•	•	•	•	•	•	•	•	•	•	•	G	G	G	Α	Α	Т	3+1	1.89
4	7	131867278	•	•	•	•	G	•	•	-	•	G	•	•	G	•	•	•	•	•	•	•	•	Α	G	G	G	G	Т	3+1	2.06
5	10	10888380	•	Т	С	Α	•	•	•	•	•	-	•	•	٠	•	•	•	•	•	•	•	•	G	Т	G	G	Α	Т	3+1	2.26
Pank	Chr	PAM												LTF	R-1	Alig	nme	ent												MM +	Match
Rank	Chr.	PAM Location	G	С	Α	G	Α	Α	С	Т	Α	С	Α	LTF C	R-1 /	Alig C	nmo C	ent A	G	G	G	С	С	N	N	G	R	R	Ν	MM + Bulges	Match Score
Rank 1	Chr. 16	PAM Location 60092884	G •	C •	A •	G •	A C	A •	C	T •	A •	С •	A •	LTF C	R-1 / A	Alig C T	nme C •	ent A	G •	G •	G •	С •	C T	N A	N A	G G	R A	R A	N T	MM + Bulges 3 + 0	Match Score 7.27
Rank 1 2	Chr. 16 6	PAM Location 60092884 22390293	G • •	C •	A • •	G • A	A C •	A • C	C •	Т • С	A •	C •	A •	LTF C •	R-1 / A •	Alig C T	nme C •	ent A •	G • •	G • •	G • •	C •	C T	N A T	N A A	G G G	R A G	R A G	N T T	MM + Bulges 3 + 0 3 + 1	Match Score 7.27 1.77
Rank 1 2 3	Chr. 16 6 7	PAM Location 60092884 22390293 15437814	G • •	C • •	A • • T	G • A •	A C • C	A • C	C • •	T • C -	A • •	C • •	A • •	LTF C •	R-1 / A • •	Alig C T •	nme C •	ent A • •	G • •	G • •	G • •	C • •	C T •	N A T T	N A A A	G G G G	R A G G	R A G A	N T T T	MM + Bulges 3 + 0 3 + 1 3 + 1	Match Score 7.27 1.77 1.84
Rank 1 2 3 4	Chr. 16 6 7 5	PAM Location 60092884 22390293 15437814 95984632	G • • • •	C • • •	A • • T	G • A •	A C • C	A • C • T	C • • •	T • C -	A • • •	C • •	A • • (C	LTF C • •	R-1 / A • G	Alig C T •	nm(C • •	ent A • •	G • • •	G • •	G • • •	C • •	C T • •	N A T T T	N A A A G	G G G G G	R A G G A	R A G A A	N T T T T	MM + Bulges 3 + 0 3 + 1 3 + 1 3 + 1 3 + 1	Match Score 7.27 1.77 1.84 2.10

chr, chromosome; LTR, long terminal repeat; PAM, protospacer adjacent motif

Table 3: Bioinformatics output of nominated chromosomal sites with top 5 sites listed by match score for the GagD and LTR-1 guides respectively. Ranking by score models probability and may contain more mismatches, especially if they are outside the region near the PAM where mismatches are very poorly tolerated

Ponk	Chr	PAM	_											Ga	gD .	Alig	nm	ent												MM +	Match
ΠαΠΑ	CIII.	Location	G	G	Α	т	Α	G	Α	Т	G	Т	Α	A	Α	Α	G	Α	C	Α	С	С	Α	Ν	Ν	G	R	R	Ν	Bulges	Score
1	2	65655605	•	С	•	G	•	•	-	•	•	•	Т	•	•	•	•	•	•	•	•	•	•	G	G	G	Α	Α	Т	3 + 1	1.49
2	14	34248015	Α	•	•	G	•	С	•	_	•	С	•	•	•	•	•	•	•	•	•	•	•	С	Α	G	Α	Α	т	4 + 1	1.53
3	3	12279106	Α	•	•	Α	•	•	С	Α	•	G	•	•	•	•	•	•	•	•	•	•	•	С	Α	G	Α	G	Т	5 + 0	1.54
4	2	18127193	•	G	•	•	•	-	•	G	•	•	С	•	•	•	•	•	•	•	•	•	•	Α	G	G	Α	Α	Т	3+1	1.55
5	1	205588788	Т	•	Т	•	Т	•	Т	•	Т	•	Т	•	•	•	•	•	•	•	•	•	•	Α	С	G	Α	G	Т	6 + 0	1.58
Pank	Chr	PAM												LTI	R-1	Alig	inm	ent						-						MM +	Match
Παπκ	0111.	Location	G	С	Α	G	Α	Α	С	Т	Α	С	Α	С	Α	С	С	Α	G	G	G	С	C	Ν	Ν	G	R	R	Ν	Bulges	Score
1	11	3368042	•	Α	G	•	С	•	•	С	•	С	С	•	•	•	•	•	•	•	•	•	•	G	G	G	G	Α	т	5 + 0	1.65
2	1	41908553	•	•	•	•	G	•	G	•	•	G	G	•	•	•	•	•	•	•	•	•	•	С	Т	G	Α	G	Т	4 + 0	1.73
				_																											
3	5	1116177	С	•	•	•	G	•	G	•	С	•	-	•	٠	•	•	•	•	•	•	•	•	G	Α	G	Α	A	т	4 + 1	1.76
3 4	5 6	1116177 22390293	C •	•	•	• A	G •	• C	G •	• C	C •	•	-	•	•	•	•	•	•	•	•	•	•	G T	A A	G G	A G	A G	T T	4 + 1 3 + 1	1.76 1.77

chr, chromosome; LTR, long terminal repeat; PAM, protospacer adjacent moti

CONCLUSIONS

• This work extends our previous specificity studies of EBT-101, a CRISPR-based therapeutic candidate entering clinical trials as a potential one-time cure for HIV and extends our validation of HIV excision in humanized mice and non-human primate studies that demonstrate biodistribution, safety, and simian immunodeficiency virus excision in relevant tissues

EXCISION

References

1) D'Souza, et al. Am J Epidemiol. 2019; 2) Dash, et al. Nat Comm. 2019;

- 3) Hu, et al. PNAS. 2014;
- 4) Khalili, et al. J Neurovirol. 2015;
- 5) Kaminski, et al. Sci Rep. Jul 2016;
- 6) Kaminski, et al. Sci Rep. Aug 2016;
- 7) Kaminski, et al. Gene Ther. 2016; 8) Bella, et al. Mol Ther: NA. 2018;
- 9) Dampier, et al. AIDS Res Hum Retroviruses. 2018;

10) Mancuso, et al. Nat Comm. 2020; 11) https://www.idtdna.com/pages/ products/crispr-genome-editing/ rhampseq-crispr-analysis-system

Acknowledgments

- Thanks to the Bioinformatics and Gene editing teams
- Thanks to our collaborators Kamel Khalili, PhD, and Tricia H. Burdo, PhD, at Temple University
- The presentation was developed by Chuck Blajszczak, PhD, of AlphaScientia, LLC, with the support of Excision BioTherapeutics

Disclosures

TJ Cradick reports commercial (salary and ownership) interest in Excision **BioTherapeutics.**

Presented at ASGCT, May 16–18, 2022